KS-19557 DETECTOR
(NUCLEAR BLAST)

DESCRIPTION

CONTENTS

1. GENERAL 1
2. DESCRIPTION 2
3. OPERATION 3
4. TROUBLESHOOTING 6
5. MAINTENANCE OF ENVIRONMENTAL SHIELD .. 7
6. PROCEDURE FOR DETECTION UNIT
 REPLACEMENT 7
 REMOVING THE DETECTION UNIT 8
 REPLACING THE DETECTION UNIT 8
 ADJUSTING THE HIGH VOLTAGE CONVERTER . 9
7. CABLE ASSEMBLY 10
8. SCHEMATIC AND WIRING DIAGRAM 12

1. GENERAL

1.01 This section describes the KS-19557 detector intended for use at any hardened communications facility to provide warning of the detonation of a nuclear device prior to the arrival of the associated shock wave.

1.02 This section is reissued to change list numbers in 1.04, operating voltages in 1.05, test procedure in 4.02(2)(a) and (b), to add Part 7, Fig. 5, 7, and 8, and to revise Fig. 9 and 10.

1.03 The detector basically consists of a radiation sensitive detection unit installed in a blastproof enclosure above ground level with the associated electronic equipment installed in a hardened facility below ground level. The detection unit and associated electronic equipment are connected by signal lines and dc power lines enclosed in one specially designed cable, one end of which is terminated at time of installation (see Part 7).

1.04 The KS-19557 detector is designated list numbers 1 through 13 and 28 through 40.

The list number to be used at any given facility is determined by the available dc supply voltage, whether the electrical equipment cabinet is to be wall or rack mounted, whether the facility is manned or unmanned, and whether the facility is situated above or below an elevation of 4500 feet. Each of the list numbers 1 through 13 and 28 through 40 identifies a complete detection system. List numbers 17 through 27 and 44 through 47 identify the components of the system. List numbers 1 through 13 are for use at facilities located below 4500 feet in elevation and list numbers 28 through 40 are for use at facilities located above 4500 feet in elevation. List numbers 44 through 47 are special electrical equipment cabinets that are used in the high elevation detection systems of list numbers 28 through 40. All components are interchangeable for high or low elevation systems.

1.05 The detector operates on power supplied by the facility batteries which prevent loss of protection provided by the detector should commercial power fail. The detection system is designed to operate on +24Vdc or -24Vdc.

1.06 The electrical equipment cabinet can be mounted either in a 19-inch or larger equipment bay or on a wall. If mounted in the bay, shock mountings are not required on the electrical equipment cabinet since the entire equipment bay will be shock-mounted in accordance with standard hardening procedures. For wall mounting, a special bracket with shock isolators is used.
For manned facilities, the detector is designed for manual reset after triggering. A 3-minute time delay on reset is incorporated to prevent opening the blast valves as a shock wave is approaching. For unmanned facilities, automatic reset, after a 30-minute delay, is provided. For both manned and unmanned facilities, a key lock switch is provided to bypass the entire detector system, allowing the blast valves to be opened if they have closed due to a failure in the detection equipment and also to allow the blast valves to be opened in an emergency. The key lock switch is designed so the key cannot be removed when the switch is in the MANUAL (bypass) position but can be removed with the switch in the AUTO position. Under normal operating conditions the key should be removed from the switch to prevent the detection system from inadvertently being bypassed.

2. DESCRIPTION

2.01 The KS-19557 detector is a nuclear explosion detection system activated by the gamma radiation pulse released by the detonation of a nuclear device. The detection system consists of a detection unit, an electrical equipment cabinet, and a connecting cable.

2.02 The detection unit (Fig. 1) is shock-mounted within a shield assembly (Fig. 2) which is shock-mounted above ground. The detection unit and shield assembly are designed to withstand repeated blast overpressures of 50 pounds per square inch. The shield also provides adequate insulation to prevent high temperatures from damaging the scintillation plastic in the detection unit. The scintillation plastic can withstand temperatures up to 60°C for extended periods; however, the temperature of the plastic must never exceed 70°C.

2.03 Activation of the detection unit is caused by a gamma radiation pulse. The radiation pulse reacts with the scintillation plastic, producing a light pulse which is picked up by a photomultiplier tube. After converting the light pulse to an

Fig. 1—Detection Unit
When the output relay opens, devices (blast shield, alarms, etc) connected to the detection system will operate to protect the facility. A fail-safe system is provided to ensure operation of the devices should a dc power failure occur. The contact on the output relay is rated at a continuous 2-ampere resistive load at 250Vdc.

The general location of the components of the KS-19557 detector is shown in Fig. 4 which depicts a typical hardened communications facility. Detailed installation information for the detector is given in KS-19557 Nuclear Blast Detector Installation drawing, B-995326.

3. OPERATION

3.01 The following controls are provided on the front panel of the electrical equipment cabinet:

(a) ON-OFF switch—Controls all power to the detector.
Fig. 3—Electrical Equipment Cabinet

(b) RESET switch—Following the proper time interval, resets the circuit after it has been tripped.

(c) TEST switch—Provides circuit test.

(d) TEST light—Flashing light when TEST switch is operated indicates proper functioning of detector. Continuous operation of the light indicates detector has tripped.

(e) EMERGENCY VALVE CONTROL, MANUAL-AUTO—A key lock switch that is operated to the AUTO position for normal operation. In the MANUAL position, the detector is bypassed and is no longer protecting the facility.

(f) DETECTOR BYPASSED light—When lighted, indicates detector is bypassed.

(g) Indicating fuse—When operated, indicates overload or short circuit in equipment.

3.02 Operational Test on Detector System After Installation:

(1) Test is to be performed prior to the attachment of station equipment that is to be detector controlled.

(2) Check to be sure B-995325 cable, connecting the electrical cabinet to the detection unit, is properly connected.

(3) Install the proper fuses in the electrical equipment cabinet and in the facility power distribution board at the designated location.

(4) EMERGENCY VALVE CONTROL switch should be in the AUTO position.

(5) Operate the detector ON-OFF switch to the ON position. The TEST light should light and glow continuously.

(6) After approximately 3 minutes on most models, push the RESET switch. The TEST light should go out. In detectors wired for automatic reset, this step is automatically performed by the equipment after a 30-minute interval rather than the 3-minute interval.

(7) Push and hold TEST switch. The TEST light should flash at approximately 1/2-second intervals.

(8) Operate the EMERGENCY VALVE CONTROL key lock switch to the MANUAL position. The DETECTOR BYPASSED light should light. Return the switch to the AUTO position.
Fig. 4—Typical KS-19557 Detector Installation
4. TROUBLESHOOTING

4.01 Operate detector ON-OFF switch to the ON position. The TEST light should glow continuously. If it does not light, there is no power to the detector, the fuse is open, or the bulb is burned out.

4.02 Wait approximately 3 minutes, then push RESET switch. (On the appropriate model, a 30-minute wait will be required.) If the detector fails to reset or if the TEST fails [see 3.02 (7)] after resetting is accomplished, proceed to the following steps:

(1) Keep the power on the detector.

(2) Set a VOM or VTVM to measure ± 24Vdc according to the polarity of the power source.

(a) Connect the hot lead to TS2 terminal 1. See Fig. 5 for location of terminals in the electrical equipment cabinet. Connect the common lead to the chassis. If the voltage is 21 to 28 volts, the proper power is reaching the detector output.

(b) Move the positive lead to TS1 terminal 1 and connect the negative lead to the chassis. The voltage should be $+23$ to $+26$Vdc.†

Note: If the voltages (2) or (3) are incorrect, disconnect the cable that goes to the detection unit and remeasure the voltages. If the proper readings are then present, the cable, its connectors, or the detection unit is at fault.

(3) Set a VOM to the 250Vdc scale. Connect the negative lead of the meter to TP1 located on the side of the high voltage compartment. Connect the positive lead to the chassis. For

Fig. 5—Electrical Equipment Cabinet—Cover Open
detectors designed for high elevation, the meter should indicate between 119 and 137Vdc. Voltages for all other detectors should be between 121 and 152Vdc. The voltage for a given detector system is determined by the detection unit. One specific voltage is required for each detection unit (see 6.28 (5)). If the meter indication is correct, the proper high voltage is being generated.

(4) Set a VOM to measure -130Vdc. Connect the negative lead to the lower terminal of resistor R38. Resistor R38 is located on the bracket next to switch S4 on the inside of the front panel. It is the resistor farthest away from the switch. Connect the positive lead to the chassis. Depress the TEST button. The meter should indicate greater than 90Vdc.

4.03 If the tests in 4.01 and 4.02 are satisfactorily completed and an oscilloscope is available, perform the following:

(1) Set oscilloscope as follows:
 - Horizontal—100 μsec/cm
 - Vertical—5 volts/cm
 - Trigger—internal positive

(2) Connect the ground lead to the chassis and the input lead to TB3 terminal E3.

(3) Depress and hold the TEST switch. The observed pulse should be at least 3.5 volts. If this pulse is present, the detector trouble is probably in the multivibrator circuit or the output relay (K1). If this pulse is not present, the trouble is in the cable or connectors to the detection unit or the detection unit itself.

5. MAINTENANCE OF ENVIRONMENTAL SHIELD

5.01 For the detector to function properly should a nuclear explosion occur, the flame sprayed aluminum surfaces of the environmental shield must be kept clean.

5.02 The flame sprayed aluminum surfaces may be cleaned with soap and water and a soft bristled brush. Under no circumstances should these surfaces be given an organic finish.

6. PROCEDURE FOR DETECTION UNIT REPLACEMENT

6.01 Should it become necessary to replace a detection unit, the high voltage converter located in the electrical equipment cabinet must be adjusted to the operating voltage requirement for the new detection unit. This adjustment must be made prior to using the detection system. The required operating voltage, which is stamped on the side of the detection unit directly below the serial number, should be recorded in place of the old requirement in the electrical equipment cabinet. It is imperative that this adjustment be made, as covered in 6.28, since each detection unit has a different operating voltage requirement.

6.02 List of Tools and Materials Required for Detection Unit Replacement:

<table>
<thead>
<tr>
<th>CODE OR SPEC NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-2812</td>
<td>3/16-Inch Allen Wrench</td>
</tr>
<tr>
<td>R-1060</td>
<td>Putty Knife</td>
</tr>
<tr>
<td>—</td>
<td>1-1/8 Inch Socket Wrench</td>
</tr>
<tr>
<td>—</td>
<td>Ratchet Wrench</td>
</tr>
<tr>
<td>—</td>
<td>6-Inch Screwdriver, Captive Type (see note)</td>
</tr>
<tr>
<td>—</td>
<td>Automobile Bumper Jack</td>
</tr>
<tr>
<td>—</td>
<td>P Long-Nose Pliers</td>
</tr>
<tr>
<td>—</td>
<td>Torque Wrench (capable of measuring 106 foot pounds)</td>
</tr>
<tr>
<td>—</td>
<td>Wood Blocks 3- by 1- by 1/4-inch thick (approximately) 2 required.</td>
</tr>
</tbody>
</table>

Note: If a captive type screwdriver is not available use a 6-inch C screwdriver and a 606 screwstarter.

MATERIALS

Heavy gauge plastic, cardboard, or other similar material to be used for padding on the lifting jaw of the bumper jack. Also, a large enough piece of the same material to be placed on the...
ground and used as a mat to protect the flame sprayed surface of the upper shield from chipping after it has been removed.

8451 "O"-Ring, 15.50-inch O.D., Minnesota Rubber Co., Minneapolis, Minn. or Parker Seal Co. equivalent.

Protect-Sorb 121 Silica Gel, two 8-unit Lantuck Bags, Davison Chemical Co., Baltimore, Maryland.

REMOVING THE DETECTION UNIT

6.03 Remove the twelve 3/4-inch bolts.

6.04 Place a protective pad under one of the four handhold lugs of the upper shield and emplace the bumper jack with its lifting jaw under the lug.

6.05 Slowly jack up the upper shield until there is enough clearance to emplace the wooden blocks.

6.06 Remove jacks.

Caution: When handling the upper shield, exercise care to prevent chipping the flame sprayed surface. The shield cannot function properly under nuclear blast conditions unless its surface is clean and free of defects.

6.07 Partially lift out the upper shield and detection unit assembly and rest it at an angle in the lower shield to allow removal of the cable through the 4-1/2 inch hole in the bottom of the inner container. If properly placed, the operator should be able to see the connectors through the hole. Disconnect the two connectors and the ground wire.

6.08 Lift out the upper shield and detection unit assembly, invert, and place on the protective mat.

6.09 Remove the 15.50-inch "O"-ring and discard.

6.10 Remove silica gel packets. They can be reactivated for later use or discarded.

6.11 Clean off the majority of the EC-1020 sealant with a putty knife.

6.12 Through the hole in the bottom of the inner container, remove the five screws holding the detection unit to the 5-inch diameter spring. Save the screws.

6.13 Remove and save the 12 socket head screws from the upper shield, then remove and invert the inner container.

6.14 Release the six springs by applying the long-nose pliers on the loop at the detection unit end of the spring. Use care to avoid crushing the insulation which is easily damaged.

6.15 Remove detection unit. Do NOT lift using scintillator cone.

REPLACING THE DETECTION UNIT

6.16 Place the detection unit on the large spring properly oriented so the 8-pin connector is located next to the spring plate cutout.

6.17 Engage the 6 springs.

6.18 Place the inner container carefully on its side and secure the detection unit to the 5-inch diameter spring using the screws removed in 6.12.

6.19 Place the inner container on the inverted upper shield and attach it with the 12 socket head screws. Two 1/4-20 setscrews placed 180 degrees apart can be used to orient the container for easier assembly. They need not be removed if their height is equal to or less than the head height of the socket screws they replace.

6.20 Place a new 15.50-inch diameter "O"-ring in the groove on the lower shield.

6.21 Place the EC-1020 sealant on the lower shield.

6.22 Position the assembly at an angle as in 6.07 and attach the ground wire and connectors.
6.23 Remove the two 8-unit silica gel bags from their foil wrap and place in the bottom of the lower shield in the well created by the lower mounting ring.

6.24 Check the EC-1020 sealant placement.

6.25 Lower the upper shield assembly carefully into the lower shield, orienting the bolt holes properly. Once the two surfaces meet with the entire weight of the upper shield, it will be impossible to reorient them without again using the bumper jack as a lifting aid. (EC-1020 may also have to be replaced.)

6.26 Tighten the 3/4-inch bolts to 106 foot pounds of torque.

6.27 Check to be sure that the EC-1020 has squeezed out uniformly around flange. Surface areas of the flange which are not coated with the sealant will rust since they contain no other protective coating.

ADJUSTING THE HIGH VOLTAGE CONVERTER

6.28 After replacing a detection unit, adjustment of the high voltage converter on the electrical equipment cabinet is necessary. The method of adjusting the high voltage converter is given in the following steps:

(1) Operate the ON-OFF switch on the front panel to the OFF position.

(2) Remove fuse from the front panel.

(3) Remove the screws and open the front panel.

(4) Remove the screws from the high voltage compartment cover located in the upper left hand corner of the electrical equipment cabinet, and remove the cover. The high voltage compartment is illustrated in Fig. 6.

(5) Refer to the correct detection unit voltage as stamped on the new unit. In some instances, adjusting the electrical cabinet high voltage may require changing resistor R35. Check the value of R35. The following list shows values for R35 based on the required detection unit voltage and the limits of the high voltage converter.

<table>
<thead>
<tr>
<th>R35 IN OHMS</th>
<th>DETECTION UNIT VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,000</td>
<td>740 through 830</td>
</tr>
<tr>
<td>33,000</td>
<td>830 through 910</td>
</tr>
<tr>
<td>10,000</td>
<td>910 through 960</td>
</tr>
</tbody>
</table>

If necessary, change resistor R35.

(6) Remove the cap from the adjusting screw of DD1.

(7) Push out the adjusting hole plug in the right side of the compartment.

(8) To determine the correct voltage at TP1, multiply the high voltage required by the detection unit by 0.161. For example, a detection unit requiring 850Vdc will produce a test point reading of 137Vdc. Set the meter accordingly. Connect the negative lead of a dc voltmeter to TP1. Connect the positive lead to the chassis.

(9) Insert an insulated tool through the hole in the right side of the compartment and into the alignment screw in DD1. The tool should have a 1/8-inch wide screwdriver-type end.

(10) Replace the high voltage compartment cover in order to engage the interlock.
(11) Replace the front panel fuse.

(12) Operate the ON-OFF switch to the ON position.

(13) Adjust DD1 by turning the insulated tool slowly until the meter indicates the correct test point voltage. (Turn clockwise to increase voltage.)

(14) Operate the ON-OFF switch to the OFF position.

(15) Remove high voltage compartment cover and replace the cap on the adjusting screw in DD1.

(16) Replace the plug in the side of the compartment.

(17) Replace the high voltage compartment cover.

(18) Replace the front panel.

7. CABLE ASSEMBLY

7.01 The electronic equipment end of the KS-19557 cable assembly (Fig. 7) is furnished raw-ended. The connectors are shipped loose with the cable assembly and must be wired at the installation site.

7.02 Termination of KS-19557 Cable Assembly

(a) Termination of connector plug PT06E-12-8P

(1) Remove approximately 5 inches of outer jacket from the B-995163 special electrical cable. Do not damage the inner cable jackets.

(2) Prepare both twisted pair sections of the cable as shown in Fig. 8A and 8B. Remove the minimum length of jacket to allow for the required length of skinner and assembly of inner ferrule. Do not nick the strands of shielding.

(3) Tin the inner conductors.

(4) Slide the size 6 insulation sleeving onto the cable jacket.

(5) Slide the inner ferrule over the conductors and under the shielding as close as possible to the end of the outer jacket (Fig. 8B). Trim the shielding 1/16 inch from the edge of the inner ferrule. Do not comb out the shielding unless it is too tight to assemble the inner ferrule.

(6) Slide the outer ferrule forward over the shielding and insert the bare conductor of the shield conductor under the outer ferrule. The outer ferrule shall be within 1/32 inch from the inner ferrule as shown in Fig. 8B.

(7) Crimp the outer ferrule using an appropriate tool. Verify that the inner ferrule has not collapsed from the crimping operation.

(8) Slide size 6 insulation sleeving forward over entire termination (Fig. 8B). Shrink sleeving by applying an approved heat source.

(9) Cut shield conductor to same length as insulated conductors.

(10) Perform Steps 4 through 9 for the other twisted pair section of the cable.

(11) Disassemble the connector. Remove the cable clamp parts from the rear body of connector. Discard clamp, nut parts, and rubber wire sealing grommet.

(12) Slide 1-1/2 inch insulation sleeving over the shield conductors and both twisted pair cables onto their jackets.

(13) Slide rear body of connector and grommet retaining ring over conductors and shield terminations.

(14) Slide 5/8-inch length insulation sleeving over all insulated shield conductors (Fig. 8B).

(15) Solder inner conductors to proper terminals as shown in Fig. 7. Slide insulation sleeving over soldered terminations.

(16) Assemble the connector.

(17) Slide 1-1/2 inch length insulation sleeving forward over shield termination and cable clamping tabs of rear connector body (Fig. 7). Shrink sleeving by applying an approved heat source.
(b) Termination of Connector Plug 2085-1

1. Prepare cable containing high voltage wire as shown in Fig. 8A and 8C.

2. Pull shielding toward end of conductor and shape open end of shielding into a cone. Outer surface of shielding will be smooth.

3. Slide clamp nut, plain washer, and rubber gasket over shielding and onto jacket; then slide shield clamp over shielding of cable until the inside protrusion butts against outer jacket (Fig. 8C).

4. Fold shielding back over shield clamp, forming a smooth outside surface with no crossover of strands.

5. Cut shielding to the outside diameter of shield clamp as shown in Fig. 8C.

6. Remove dielectric to dimension shown. Do not nick the inner conductor. Tin bare conductor, insert into contact pin, and solder. Contact pin must butt against dielectric.
Remove excess solder from outside of contact. Be sure cable dielectric is not heated excessively and swollen so as to prevent it from entering the connector body.

(7) Push assembly into connector body as far as possible. Hold cable and shell rigid, slide clamp nut into body, and screw into place with wrench until secure.

8. SCHEMATIC AND WIRING DIAGRAM

8.01 Fig. 9 and 10 give the schematic and wiring diagram, respectively, for the KS-19557 detector.

Fig. 8—Connector Termination
NOTES:
1. UNLESS OTHERWISE SPECIFIED, RESISTANCE VALUES ARE IN OHMS. CAPACITANCE VALUES ARE IN MICROFARADS. INDUCTANCE VALUES ARE IN MILLIHENRIES.
2. SEE STOCK LIST OF ASSEMBLY DRAWINGS B-876946 FOR INFORMATION CONCERNING COMPONENTS REFERRED TO BY REFERENCE.
3. PROVIDE FEATURE OR OPTION APP OR FIG. QUANTITY
 MANUAL RESET S T
 AUTOMATIC RESET S T
 AVAILABLE INPUT VOLTAGE MFR SUPPLIED, PROPER
 AT INSTALLATION +24V MADE AT INSTALLATION
 -24V Z

Fig. 9—KS-19557 Detector (Nuclear Blast) Schematic